活體體內(nèi)光學(xué)成像(Optical in vivo Imaging)主要采用生物發(fā)光(Biolumininescence)與熒光(Fluorescence)兩種技術(shù)標(biāo)記細(xì)胞或者DNA,利用非常靈敏的光學(xué) 檢測儀器,直接檢測活體生物體內(nèi)的細(xì)胞活動和基因行為。這項技術(shù)具有操作簡單、所得結(jié)果直觀、靈敏度高等特點,因為已經(jīng)廣泛應(yīng)用于生命科學(xué),醫(yī)學(xué)研究以及藥物開發(fā)等發(fā)面。該技術(shù)應(yīng)用于植物研究方面,具體的應(yīng)用領(lǐng)域包括:植物的突變體篩選、植物抗逆性狀研究、離體細(xì)胞的基因表達(dá)、植物生理節(jié)律研究、植物發(fā)育研究、蛋白互作等。
品牌:Lumazone®,屬北京博益?zhèn)I(yè)儀器有限公司所有,受到《中華人民共和國商標(biāo)法》保護;
歷史:
2008-2011 屬美國Roper集團MGH;
2012-2014 屬美國Roper日本分公司;
2015- 屬北京博益?zhèn)I(yè)儀器有限公司
技術(shù)簡介
Lumazone®系統(tǒng)是北京博益?zhèn)I(yè)儀器有限公司與美國 Roper Technologies, Ins. 集團研制的活體生物發(fā)光系統(tǒng),可以觀察并成像將化學(xué)發(fā)光或者熒光標(biāo)記后的動物、植物和微生物整體標(biāo)本,并結(jié)合專業(yè)的數(shù)據(jù)分析軟件,完成動物和植物體內(nèi)基因表達(dá)的原位跟蹤,藥物篩選和藥效檢測,植物突變體檢測和篩選,以及單細(xì)胞內(nèi)的基因表達(dá)等研究。
在植物活體分子影像學(xué)的研究過程中,美國Roper公司最早參與其中,為科學(xué)家提供了高靈敏度的成像系統(tǒng)。1997年,朱健康教授在Plant Cell上發(fā)表的文章就已經(jīng)使用Roper公司生產(chǎn)的高靈敏度 CCD。北京博益?zhèn)I(yè)儀器有限公司,作為 Roper Scientific公司在中國的早期代理(2008-2019),一直致力于將其最佳性能的光學(xué)成像系統(tǒng)推薦給客戶,并憑借在生命科學(xué)研究領(lǐng)域多年來積累的經(jīng)驗,能夠根據(jù)客戶需求為客戶量身定制成像系統(tǒng),因此,已成為在此領(lǐng)域中具領(lǐng)先地位的系統(tǒng)供應(yīng)商之一。
自2013年,博益?zhèn)I(yè)開始開發(fā)和生產(chǎn)暗箱,成為植物活體成像系統(tǒng)的部件供應(yīng)商和系統(tǒng)銷售商;
2024年9月份,經(jīng)過10余年的技術(shù)積累和生產(chǎn)經(jīng)驗,博益?zhèn)I(yè)開始提供全國產(chǎn)的Lumazone®植物活體成像系統(tǒng);
系統(tǒng)配置
>> 高性能CCD相機:目前有多款相機可以選擇,適應(yīng)不同的應(yīng)用;PyLon2048B, Pixis2014B, Pixis2048B,LUMO, Sophia2048B等
>> 多功能成像暗箱:目前有四種暗箱可以選擇,DBox-MW,DBox-FL,DBox-Pro, DBox-Light
>> 專用成像鏡頭: f 1.2,50; f 0.95,25,f1.4,50mm定焦大光圈鏡頭等可選;
>> 熒光光源(選配): 只有熒光型號(FL)才配置光源;
>> 專用濾光片(選配):只有熒光型號(FL)才配置光源;
>> 專業(yè)成像控制和圖像處理分析軟件:Lumazone LF Imaging軟件;
>> 專用工作站及顯示器:每年有更新配置和型號;
>> 暗箱運輸箱
產(chǎn)品型號
近年來,為了滿足植物學(xué)研究的需要,解決植物活體熒光成像時葉綠體熒光干擾的問題,博益公司推出了多款專業(yè)型的植物整體分子影像系統(tǒng),包括最新的Lumazone Sophia 2048B、 Lumazone Pylon 1300B、Lumazone Pylon2408B 等,并針對不同實驗需求配置突變體篩選暗箱或者光周期暗箱。實驗無需將植物樣本做任何處理,并可通過生物發(fā)光(LUC)和熒光方法實時觀察植物樣本基因表達(dá)的變化,準(zhǔn)確定量分析。Lumazone 產(chǎn)品根據(jù)可選CCD型號以及暗箱功能的不同,系統(tǒng)型號如下表。
CCD型號
|
突變體篩選系統(tǒng)
|
光周期成像系統(tǒng)
|
熒光成像系統(tǒng)
|
Pixis 1024B
|
Lumazone 1024B
|
Lumazone 1024B Light
|
Lumaozne 1204B FL
|
Pixis 2048B
|
Lumazone 2048B
|
Lumazone 2048B Light
|
Lumaozne 2048B FL
|
Sophia 2048B
|
Lumaozne Sophia 2048B
|
Lumaozne Sophia 2048B Light
|
Lumaozne Sophia 2048B FL
|
Pylon 1300B
|
Lumazone Pylon 1300B
|
Lumaone Pylon 1300B Light
|
Lumazone Pylon 1300B FL
|
Pylon 2048B
|
Lumazone Pylon 2048B
|
Lumazone Pylon 2048B Light
|
Lumazone Pylon 2048B FL
|
Lumo
|
Lumazone Lumo
|
Lumazone Lumo Light
|
Lumazoen Lumo FL
|
Lumazone系統(tǒng)參數(shù)
典型應(yīng)用案例
>> 突變體篩選 >> 逆境處理研究
>> 蛋白互作研究 >> 基因誘導(dǎo)表達(dá)研究

>> 節(jié)律相關(guān)研究 >> 甲基化研究
發(fā)表文獻(xiàn)
RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance
PNAS 99:11507–11512(August 20, 2002)
|
Arabidopsis hot Mutants Define Multiple Functions Required for Acclimation to High Temperatures
Plant Physiology 132:757–767 (Jun 2003)
|
Screening for Gene Regulation Mutants by Bioluminescence
Imaging
Sci. STKE 140, pl10. (9 July 2002)
|
Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors
PNAS 102:12990–12995(Sep 2005)
|
Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane
H1-ATPase by Preventing Interaction with 14-3-3 Protein
PLANT CELL 19: 1617 - 1634.( May 2007)
|
Firefly Luciferase Complementation Imaging Assay for Protein-Protein Interactions in Plants
Plant Physiology 146: 368 - 376.( Feb 2008)
|
C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic
stress signaling, growth, and development
PNAS 99: 10893–10898( Aug 2002 )
|
RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB
PNAS 103:19200–19205(Dec 2006)
|
STABILIZED1, a Stress-Upregulated Nuclear Protein, Is Required for Pre-mRNA Splicing, mRNA Turnover, and
Stress Tolerance in Arabidopsis
The Plant Cell 18: 1736–1749 (Jul 2006)
|
FIONA1 Is Essential for Regulating Period Length in the Arabidopsis Circadian Clock
The Plant Cell 20: 307–319,(Feb 2008)
The Plant Cell 20: 307–319,(Feb 2008)
|
Interaction of Osmotic Stress, Temperature, and Abscisic Acid in the Regulation of Gene Expression in Arabidopsis
Plant Physiology 119: 205–211( Jan 1999)
|
Regulated Expression of Arabidopsis Phosphate Transporters1
Plant Physiology 130: 221–233 (Sep 2002)
|
Regulation of Osmotic Stress-responsive Gene Expression
by the LOS6/ABA1 Locus in Arabidopsis
THE JOURNAL OF BIOLOGICAL CHEMISTRY 277:8588–8596
(Mar 2002)
|
A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development
Genes Dev. 23: 2717-2722(Oct 2009)
|
FIERY1 encoding an inositol polyphosphate 1-phosphatase is anegative regulator of abscisic acid and stress signaling in
Arabidopsis
Genes & Dev 15: 1971-1984(Jul 2001)
|
A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responsesin Arabidopsis
The Plant Cell 17:256–267(Jan 2005)
|
Genetic Analysis of Osmotic and Cold Stress Signal Transduction
in Arabidopsis: lnteractions and Convergence of Abscisic Acid-Dependent and Abscisic Acid-lndependent Pathways
The Plant Cell 9:1935-1949, (Nov 1997)
|
A Peroxidase Contributes to ROS Production during Arabidopsis Root Response to Potassium
Deficiency
Molecular Plant 3:420–427 (Mar 2010)
|
Activation of a COl1-dependent pathway in Arabidopsis
by Pseudomonas syringae typeIII effectors and coronatine
The Plant Journal 37:589-602 (Jan 2004)
|
A Putative Arabidopsis Nucleoporin, AtNUP160, Is Critical for RNA Export and Required for Plant Tolerance to Cold Stress
MOLECULAR AND CELLULAR BIOLOGY 26:9533–9543 (Dec.2006)
|
Regulated Expression of Arabidopsis Phosphate Transporters
Plant Physiology 130: 221 - 233 (Sep 2002)
|
COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis
The Plant Cell, Vol. 20: 292–306, February 2008
|
Ethanol breaks dormancy of the potato tuber apical bud
Journal of Experimental Botany 56:2515–2525(Sep 2005)
|
Disruption of Arabidopsis CHY1 Reveals an Important Role of Metabolic Status in Plant Cold
Molecular Plant 2:59–72 (January 2009)
|
HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants
PNAS 102:9966–9971 (Jul 12, 2005)
|
Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance
PNAS 105:4945–4950 (Mar 2008)
|
NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V
and is required for RNA-directed DNA methylation
GENES & DEVELOPMENT 23:318–330(Jan 2009)
|
Role of the Arabidopsis DNA glycosylase_lyase ROS1 in active DNA demethylation
PNAS 103:11796–11801(Aug 2006 )
|
A GUS/Luciferase Fusion Reporter for Plant Gene Trapping and for Assay of Promoter Activity with Luciferin-Dependent Control of the Reporter Protein Stability
Plant Cell Physiol. 48(8): 1121–1131 (2007)
|
Isolation and Characterization of cul1-7, a Recessive Allele of CULLIN1 That Disrupts SCF Function at the C Terminus of CUL1 in Arabidopsis thaliana
Genetics 181: 945–963 (March 2009)
|
The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in Arabidopsis
PLANT CELL, May 2011; 23: 1971 - 1984
|
Testing Time: Can Ethanol-Induced Pulses of Proposed Oscillator Components Phase Shift Rhythms in Arabidopsis?
JOURNAL OF BIOLOGICAL RHYTHMS, Vol. 23 No. 6, December 2008 463-471
|
Fully Codon-Optimized luciferase Uncovers Novel Temperature Characteristics of the Neurospora Clock
EUKARYOTIC CELL, Jan. 2008, p. 28–37
|
RTE1 Is a Golgi-Associated and ETR1-DependentNegative Regulator of Ethylene Responses
Plant Physiology, September 2007, Vol. 145, pp. 75–86
|